
1) Different ways to digitalize a shape of the tan's family
a) The first way: shape and length numbers 

2 strings "shapeNumber" and "lengthNumber". 
This codification come from Eric's program.
For the shape number, the codification of the inside angles 
are : 1 for 45°, 2 for 90°, 3 for 135°, 5, 6 or 7. The length 
number tell if there is 1, 2, 3, ... length units. Length units 
have not the same value if the direction is along the grid or 
in  the  diagonal  direction.  These  strings  are  used  in  the 
array-form S[]  and  L[]  (the  S  for  Shape  and  the  L for 
Length). Additionnaly the array D[] is used for Directions. 
The  first  direction  digit  D[0]  is  the  most  important  one 
(other will be computed from it) and is equal to the L[0]. 
So L[1] is the first length digit, S[0]is the first shape digit.
If there is C sides, the last shape digit will be S[C-1], the 
last length digit L[C], and the last direction digit D[C-1].

In  the  picture  some exemples  :  the  length  number  first, 
then the L[0]=D[0] between brackets, and then the length 
number. The first direction digit (L[0]=D[0]) could be only 
1 or 2 : 1 if the first side is in the diagonal direction, 2 if 
the first side is in the vertical direction (see the 8 possible 
direction digits (0,1,2,3,4,5,6,7) in the picture).

Shape numbers and length numbers are computed in 
order  to  classify them as  integer  numbers  (112 is 
before 1133 which is before 111166 which is before 
112552, ...)

In  order  to  avoid  that  the  same  tan  appears  with 
different codifications,  the first one is kept, others 
are deleted or ignored. For instance, this tan is kept 
with this number 1313 12424. But it could appear in 
other digitizations : 3131 12424 or also 1313 24242. 
Seel  also  the  tan  1313 12222 which  could  appear  with  same length  and shape  numbers,  the  first 
direction digit only makes the difference.

b) The cartesian coordinates

These are usefull for the drawing of the polygons (java command of drawing a polygon neads this 
arrays of coordinates). There are easy to comput from the 3 arrays of digits S, L and D. We start from 
x[0]=0 and y[0]=0 and comput first x[1] and y[1] using both D[0] and L[1], then we advance and 
comput x[2] and y[2] using both D[1] and L[2], ...



For instance, the big triangle of 16 triangles area is digitized by the following coordinates :  
• x[0]=y[0]=0  
• x[1]=0, y[1]=4  
• x[2]=4, y[2]=0  
• x[3]=y[3]=0 

The positive value of y are in the down 
direction.  See  this  printing  of  the 
program for other exemples.

When the shapes  are  computed,  it  is  a 
way to recognize polygons (closed lines) 
from open lines : if C is the number of 
sides  x[C]  and  y[C]  must  be  equal  to 
x[0]  and  y[0],  says  to  0.  These 
coordinates  are  also  used  to  recognize 
polygons with  cross  sides,  or  polygons 
wich have a vertex on a side.

The  coordinates  are  also  multiplied  in 
order to draw the polygons. We are using 
a  square  grid  of  20  pixels  for  1  unit. 
Then, when the tans are moved (in the 
'play'  mode)  we  translate  the  tans  be 
changing the coordinates.

c) The L1 number

This number appear like a string of digits. Each digit has a meaning :
• 0 is for 1 length unit in the grid direction.
• 9 is for 1 length unit in the diagonal direction.
• 1,2,3,5,6,7 are the shape digits

For instance, the big triangle of 16 triangles area is digitized by a L1 number : 000019999100002
This  means  that  you  can  draw this  shape  :  4  length  units  in  the  grid  direction  (either  vertical  or 
horizontal) then a 45° angle, then 4 length units in the diagonal direction and another 45° angle. The 
last angle is not necessary but still given. Here are the java console printing of what appears when you 
comput the different convex shapes with 16 triangles.

These number is not used in the Eric program. We have needed it in the process of deleting double 
shapes. At the begining, our rules where not strong enough, or too strong, so we delete not double 
shapes or keep double ones. With this number, ordered in the integer order, we have a unique signature 



for each tan, easy to compare with others to kkep or delete new shapes.

d) The last way to digitalize a tan : a 6 values array of arrays

This is an array of arrays, let us say DT[j][i] where i is a column index and j is a row index. It gives, 
with integers from 0 to 5 (6 values), the place occupied by the inside of the tan, in a decomposition 
based on the grid. The codification used is the following :

• 0 is used when the tan is not located on this square of the grid
• 5 is used when the tan is fully located on this square of the grid
• 1, 2, 3 or 4 are used when only a half part of the square is occupied by the tan.

The picture shows this codification.

With this codification we get for the first convex shapes of 16 triangles the following :

This codification has been used for the recorded shapes and the tans of a tanset in the research of 
solutions. To know if a tan fit a place, we just have to try to substract the digits of the tans from those of 
the shape with this special rule :

• It is possible to substract 0, 1, 2, 3 or 4 from 5 (5-4=1 ; 5-3=2 ; ..)
• It is possible to substract 0 from each digit (1-0=0 ; 2-0=0 ; ..)
• It is impossible to make other substraction : 4-1 has no solution (it is 4 which remains), the 

same for 3-2 or 3-1, ..

With these rules we just have to try to substract 
each digits, if a soubstraction is impossible we 
know that the tan doesn't fit, if it is possible we 
keep the digitized shape with the results of the 
substractions. For instance, if I need to try to fit 
the  tan  digitized  451  from  the  big  triangle 
digitized  5553 on the first row. From the first 
position of the tan (at the upper left corner of 



the shape) it is possible, and I get 1043 still remaining on the first raw to be fitted by the other tans. The 
shape is matched by all the tans if, at the end of the process (when all the tans of the tanset has been 
tried) we get only 0 for each digit of this DT[j][i] array. 

Of course the digitization 451 
is not the only one possible for 
the mentioned tan. It could be 
turn  and  flipped.  For  an 
ordinary  tan  (without  special 
symmetry features) it could be 
digitized  with  8  different 
arrays. This number is less for 
symmetric  tans,  for  instance 
the small square of 2 triangles 
has  only  one  digitization  :  5. 
So, we are examining each tan 
to  recognize  its  family  of 
symmetry and then comput all 
the alias of the tans that would 
be needed for the process. Here 
is  a  printing  that  show  the 
result  for  some tans  from the 
Tangram set. 

2) How does it works 

a) To find all the shapes

The shape numbers are taken from 112 (the lesser shape number) to 33333333 if it is a convex shape. 
For each shape number we try each possible length numbers (starting at 111..), in the two possible ways 
of the first digit number (0 or 1). 

In order to fasten the program we have put some rules that must be obeied by the digits. Some are very 
general, commun for all the shapes, and others are special but still very usefull. For instance lengthMax 
is the maximum possible value of the length digit for a shape. There are two rules used, one being 
predominant quickly : 
lengthMax=triangles+3-cotes;  if(triangles/2+1<lengthMax)lengthMax=triangles/2+1;
An exemple of very peticuliar rule : for the convex shapes of 7 sides, the length digits should obey to 
this rule : L[1]=(2*L[4]+L[5]+L[3]-L[7])/2 and L[2]=(2*L[6]+L[7]+L[5]-L[3])/2 are the 2 digit that 
could computed without trying other values. Other values are not possible. See the extract of the code 
that shows the rule for the 2 different possible first direction digit.
if(cotes==7){if(L[0]==1){L[1]=(2*L[4]+L[5]+L[3]-L[7])/2;L[2]=(2*L[6]+L[7]+L[5]-L[3])/2;}
                     else       {L[1]=L[3]+L[4]+L[5]-L[7];      L[2]=L[5]+L[6]+L[7]-L[3];}
                                                 if(L[1]<1||L[2]<1)impossible=true;}
Many of the rules used here are taken from the Eric's program. My preferred one is the rule that links 
the area, the vertice in the perimeter and the vertice inside the shape known as the Pick formula. This 
rule is not used like that but just to compare the perimeter and the number of trianles of the tan : there 
must have the same parity (both odd or both even), so we just ask if  perimeter+triangles is an even 
number. For the different possible values of perimeter (sum of the length digits) we had these rules :
PerimeterMax=triangles+2                PerimeterMin=(int)(Math.sqrt(4.0*triangles))
The first one come from the Pick formula. The other one is from my own. I have tested it for many 
different values and it seems to be effective. It assumes that the minimum value of a perimeter is more 
than  the  integer  value  of  4 triangles× .  If  someone  could  once  give  me  the  mathematical 
demonstration of this I will be more confident in this use. These other peticuliar rules of my own are 



not sure but usefull to fasten the process : the maximum values of a length digit that stop the research 
(for one shape number) : L[3]>10 when sides = 7 and L[3]>2 when sides = 8. I assume these rules are 
ok up to 100 triangles, but may be wrong for more than 100 triangles.
There are also some rules that are used when we ask for some symmetry. The different symmetries have 
been converted in rules for the digits, in order to fasten the program. 

b) To find a solution

It has been already explain that we take each tan, starting with the biggest, and try to substract its DT 
digits to those of the shape, or remaining shape if some tans have alreaby be placed. This backtracking 
procedure has been adapted from the Eric's program. The idea is to explore all the possibilities for a tan 
to find a place inside the shape, until the shape is matched by the tans. When the program has been 
through all the possibilities of location (parameter i and j) and alias (8 alias maximum for each tan, see 
above), if the first tan has no more place to be, the shape is declared unmatchable by the tanset. If it is 
for the 5th tan to not find a place, we reward to the 4th tan and before increasing the location or the 
alias, we add back the DT digits that we have substract. If the 4th tan don't find its place, we reward to 
the 3d, ans so on. If it finds a new place, we substract the DT digit of the alias at its location and we try 
with the 5th tan...

c) To find all the solutions

Here it is easy, as we have recorded all the shapes in an arrayList. So we just have to try to match the 
different shapes, one by one, with the process that has been described in b). 

d) To find a better tanset

Here also it is easy to go through all the process described in c) for any tanset. The procedure used here 
must find all the analogous tanset. This needs a special analysis to count the tans of each possible areas, 
and then to count the doubles for a special number of tan. When there are doubles in an area, we don't 
make any difference if the doubles are distributed in the same fashion as for the reference tanset. I mean 
if there is tans nb 2-2-3-3 there is 2 doubles for tans of area=2triangles. In this structure we will have 
the tansets composed of tans nb 2-2-3-3, 2-2-2-3, 2-3-3-3, and 2-2-4-4, 2-4-4-4, 2-2-2-4, 3-3-4-4, ...

For instance, the Tangram set has this structure :

The first line means that the first categorie of tans has an area of 1 triangle, there are 2 such tans and 1 
double. The second line gives the tans of 2 triangles and the third the tans of 4 triangles. The other 
arrays T[] and N[] are for the number of the selected different tans. Here there are 5 different tans, 
which numbers are 1, 2, 3, 4 and 9. The N array counts how many tans of each number is needed.

When we go throught a structure, we keep the same TS numbers, but we change the T numbers.

e) To find all the possible structures

This function requires to go through all the combinations of choices for the known number of tans. For 
instance if we have 6 tans and 16 triangles, we have such kind of possibilities for the structure :

• Without double : 1-2-2-2-3-6 ; 1-2-2-2-4-5 ; 1-2-2-3-3-5 ; 1-2-2-3-4-4 ; 1-2-3-3-3-4  ; 2-2-2-3-
3-4 ; 2-2-3-3-3-3 and that is all according there is only 3 tans of 2 triangles and 4 tans of 3 
triangles. 



• With 1 double : 1-1-2-2-2-8 1-1-2-2-3-7 1-1-2-2-4-6 1-1-2-2-5-5 1-1-2-3-3-6 1-1-2-3-4-5 1-1-2-
4-4-4 1-1-3-3-3-5 1-1-3-3-4-4 1-2-2-2-2-7  ...  and many others.

• With 2 doubles : 1-1-1-2-2-9 1-1-1-2-3-8 1-1-2-2-2-8  ... 1-1-2-2-2-8 1-1-2-2-3-7 1-1-2-2-4-6 1-
1-2-2-5-5  1-1-2-3-3-6 ...  1-2-2-2-2-7 ... and many others.

• With up to 4 doubles : (1-1-1-1-1-11) ; 1-3-3-3-3-3 ; 2-2-2-2-2-6 ; 2-2-2-2-4-4 ; 2-2-3-3-3-3 and 
that is all.

This tanset  1-1-1-1-1-11 may be not intersting as a tanset but it shows another limit of the program in 
the present form : tan of 11 triangles area are very numerous (around 45 000 different shapes, including 
only 7 convex shapes) and are not in the pools of the program. In the present version we have put all 
the tans up to 6 triangles (107 different shapes of 6 triangles) but then we have limited the pool to the 
convex tans, and not all of them. This is due to a limitation parameter used to count different types of 
lengths and angles. The maximum length of a tan's side may not be more than 4 in the grid direction 
and 3 in the diagonal direction. This could be changed, but the need of tans exceeding 6 triangles area is 
not so important. If we deal with bigger tans we will have so much possibilities that the running time 
will be too big. So the real limitation of the program is there : too much treatments that take too much 
time. The code may be optimized, or wroten in C, a faster langage..

To explore the different types of structures that are possible. We keep the total number of triangles and 
the total number of tans. Of course this last number may be changed also, but here we assume that we 
keep it  unchanged (it  is  easy to change it  with  another  choice of tans in  the 'Choice'  mode).  The 
structure is thus defined by the TS array. We don't keep here the number of doubles, or any number of 
the TS array. The first proposals are the structures without double, then with only 1 double, and so on. 
The proposals are in a combo box for the user information and choice. If one of those proposals is 
selected, the program displays the total amount of such tansets and when the 'validate' button is pressed, 
the program go on like in d).

To get a valid structure we just look all the numbers of n digits (n is the number of tans) and keep only 
those which a digit sum equal to the number of triangles and with rigth digits equal or greater than left 
digits. The digit 0 is used instead of 10 for tans of 10 triangles area. For instance, structure  1-2-2-2-3-6 
is found in the number 122236 and structure 1-1-1-1-2-10 is found in the number 111120. For the 
doubles we just have to share them amongst the tans, first to the tans exceeding the natural number of 
tans of one type (there is only 1 tan of 1 triangle, so if we have a structure like 111120 we must have 3 
doubles of this tan). When there are different possibilities to share the doubles, each possibilities are 
used : for instance, the structure 222334 may have 2 doubles of a 2 triangles tans and 1 of a 3 triangles 
tan, so if we are looking for tansets of 2 doubles, there could be 2 possibilities  222334 and  222334.


