TD n°1: Fonctions trinômes

I] <u>Trinôme n°1</u>

On se propose d'étudier la fonction f définie par $f(x)=x^2+x-6$.

a) Écrire f(x) sous la forme canonique $\alpha(x-\beta)^2 + \gamma$.

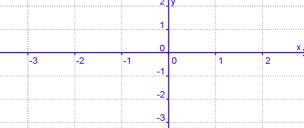
 $f(x) = \dots (x - \dots)^2 + \dots$ (ici $\alpha = \dots$; $\beta = \dots \gamma = \dots$)

b) En déduire que f admet un **minimum** $M=f(x_0)$ pour une valeur x_0 de x que vous déterminerez.

Rappel: M est un minimum de f si $\forall x \in D_f$, $f(x) \ge M$.

 $x_0 = \dots; M = \dots$

c) En déduire aussi le sens de variation de f à l'aide du signe du taux d'accroissement τ de f entre x_1 et x_2 , deux valeurs de la variable contenues dans un même intervalle I où la fonction est définie.



Taux d'accroissement τ=

Sur quel intervalle, le signe de 7 reste t-il positif?

Sur l'intervalle $\tau > 0$, donc f est

d) Tableau de variation de f

d) Tableau de variation de j.					
x					
f(x)					

e) Chercher les coordonnées des points d'intersection, si ils existent, de la courbe de f avec les axes. Axe des ordonnées : $f(0)=\dots$ donc la courbe passe par le point de coordonnées $(\dots;\dots)$

Axe des abscisses : f(x)=0 pour x=... et x=... donc la courbe passe par les points (...;...) et (...;...)Tracer alors la courbe représentant f sur un intervalle qui contient ces points.

II] Trinôme n°2

Étudions, de la même façon, la fonction g définie par $g(x) = -x^2 + 2x + 4$.

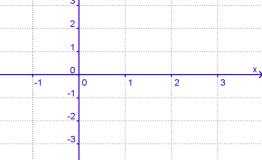
- a) Forme canonique : $g(x) =(x....)^2 +$
- b) En déduire l'extremum (maximum ou minimum) de g :

Pour $x=x_0=\dots$, la fonction g admet un égal à

- c) Taux d'accroissement τ de g: $\tau =$ Étude du signe de τ

Sur l'intervalle I=...., τ >0 donc g est st

Sur l'intervalle <i>I'</i> =,				donc g es
	x			
	g(x)			



d) Points d'intersection de la courbe de g avec les axes.

Axe des ordonnées : $g(0) = \dots$ donc la courbe passe par le point de coordonnées (...;...)

Axe des abscisses : g(x)=0 pour $x=\dots \approx \dots$ et $x=\dots \approx \dots$ donc la courbe passe par les points (...;...) et (...;...). Tracer alors la courbe représentant g sur un intervalle qui contient ces points.

III] Trinôme n°3

Refaire, de même, toutes les questions du I] pour la fonction h définie par $h(x) = 9x^2 - 6x - 4$.

IV] Problème

Dans un disque de rayon R=1 on insère un disque et un carré dans la configuration ci-contre où les centres O, A et B sont alignés. On veut étudier les variations de l'aire globale des deux figures lorsqu'on déplace le centre A du disque. On note AI=x. Dans quel intervalle varie x?

- Déterminer les aires des deux figures intérieures puis leur somme notée A(x). Vérifier que l'on peut écrire $A(x)=x^2(\pi+2)-4x+2$.
- Mettre A(x) sous la forme canonique. En déduire la valeur x_0 de xpour laquelle A passe par un minimum ainsi que la valeur $A(x_0)$ de ce minimum. Tracer le tableau de variation et la courbe de A.

