TD n°3 de Statistiques : Mesures de la dispersion

Les paramètres qui mesurent la dispersion absolue d'une série :

Écart-inter-quartile	différence entre les 2 valeurs extrêmes (Max-min) différence entre les quartiles 1 et 3 (= Q_3 - Q_1) moyenne des écarts à la moyenne	
'	racine carrée de la moyenne des carrés des écarts à la moyenne	

l] Calculs de l'écart-moyen et de l'écart-type

Tailles (en cm) de 15 élèves :

$$178 - 180 - 181 - 182 - 178 - 182 - 179 - 178 - 182 - 178 - 178 - 179 - 180 - 180 - 182$$

 \bullet Déterminer l'étendue : $e = \dots$

L'écart-type est défini par la formule $\sigma = \sqrt{\frac{\sum n_i (x_i - \overline{x})^2}{\sum n_i}}$ mais il se calcule aussi avec la formule équivalente $\sigma = \sqrt{\frac{\sum n_i x_i^2}{\sum n_i}} - \overline{x}^2$ (racine carrée de la différence entre la moyenne des carrés et le carré de la moyenne) qui a l'avantage de n'introduire \overline{x} qu'à la fin des calculs : on calcule $T_1 = \sum n_i x_i$ et $T_2 = \sum n_i x_i^2$ et, de là, on en déduit \overline{x} et σ .

Compléter le tableau ci-dessous.

χ_i	178	179	180	181	182	183	Totaux
n_i	5						$N = \sum n_i = 15$
							$T_1 = \sum n_i x_i =$
Carré: x_i^2	158420						$T_2 = \sum n_i x_i^2 =$
Écart à la moyenne : $ x_i - \overline{x} $							$T_3 = \sum n_i x_i - \overline{x} =$

- Calculer la moyenne $\bar{x} = \frac{T_1}{N} = \dots$, la moyenne des carrés $\frac{T_2}{N} = \dots$, la variance $\sigma^2 = \frac{T_2}{N} (\frac{T_1}{N})^2$ et enfin l'écart-type $\sigma = \dots$
- \bullet Calculs de l'écart-moyen : $e_m = \frac{T_3}{N} = \dots$

L'écart-moyen nécessite le calcul préalable de \bar{x} et entraı̂ne une erreur d'arrondi si on ne garde pas sa valeur exacte.

 \nearrow Comparer les résultats des trois paramètres e, σ et e_m mesurant la dispersion absolue de la série.

Utilisation du mode statistique de la calculatrice (voir pages 227-228 sur votre manuel) :

On entre les valeurs (x_i) et les effectifs (n_i) dans deux colonnes d'un tableau, puis on demande les statistiques à 1 variable (1Var) pour ces deux colonnes (onglet Stats sur la Numworks). On obtient tous les paramètres calculés ici plus quelques autres que vous reconnaîtrez comme Q_1 , M et Q_3 (simplement déterminés, ne s'agissant pas de classe).

II] Comparaison de séries statistiques

Calculs d'indicateurs *relatifs* de la dispersion : en divisant un indicateur *absolu* par une valeur centrale (moyenne, médiane ou mode) on obtient un indicateur *relatif* (sans unité) qui peut être utilisé pour comparer des séries très différentes. L'écart-type relatif $\frac{\sigma}{\overline{x}}$ est appelé *coefficient de variation*.

Voici les notes moyennes de maths et physique/chimie pour le 1^{er} trimestre d'un groupe de douze élèves :

Maths	10	10,3	15	19	16,8	16,5	17,5	11	13,5	15,5	12,7	10,2
Phys./Ch.	9,2	10	10,8	14,6	12,6	14,1	15,2	8,9	12,1	12	12,7	7,4

Déterminer la moyenne, l'écart-type et les coefficients de variation de ces deux séries

NB : On peut utiliser la calculatrice en mode statistique pour cela : il faut entrer les deux colonnes de valeurs et aussi une 3^{ème} colonne pour les effectifs (égaux à 1 pour chaque valeur).

	$\sum x_{i}$	$\sum x_i^2$	\overline{x}	σ	σ/\overline{x}
Maths					
Phys./Ch.					

Prolongement : reporter les points de coordonnées (*m*;*p*) où *m* est la note de maths et *p* la note de physique/chimie dans un graphique. Vous obtenez un nuage de points. Ce nuage vous semble t-il traduire une liaison entre les deux notes moyennes? Que signifie cette liaison éventuelle?